
Where Do Smart Contract Security Analyzers Fall Short?
Tamer Abdelaziz
NYU Abu Dhabi
tamer.m@nyu.edu

Salma Alsaghir
NYU Abu Dhabi
saa9125@nyu.edu

Karim Ali
NYU Abu Dhabi

karim.ali@nyu.edu

Abstract

Smart contracts underpin high-value ecosystems such as decentral-
ized finance (DeFi), yet recurring vulnerabilities continue to cause
losses worth billions of dollars. Although numerous security analyz-
ers that detect such flaws exist, real-world attacks remain frequent,
raising the question of whether these tools are truly effective or
simply under-used due to low developer trust. Prior benchmarks
have evaluated analyzers on synthetic or vulnerable-only contract
datasets, limiting their ability to measure false positives, false nega-
tives, and usability factors that drive adoption.

To close this gap, we present a mixed-methods study that com-
bines large-scale benchmarking with practitioner insights. We eval-
uate six widely used analyzers (i.e., Confuzzius, Dlva, Mythril,
Osiris, Oyente, and Slither) on 653 real-world smart contracts
that cover three high-impact vulnerability classes from the OWASP
Smart Contract Top Ten (i.e., reentrancy, suicidal contract termina-
tion, and integer arithmetic errors). Our results show substantial
variation in accuracy (F1 = 31.2–94.6%), high false-positive rates
(up to 32.6%), and runtimes exceeding 700 seconds per contract. We
then survey 150 professional developers and auditors to understand
how they use and perceive these tools. Our findings reveal that
excessive false positives, vague explanations, and long analysis
times are the main barriers to trust and adoption in practice. By
linking measurable performance gaps to developer perceptions, we
provide concrete recommendations for improving the precision,
explainability, and usability of smart-contract security analyzers.

CCS Concepts

• Software and its engineering→ Software verification and

validation.

Keywords

Blockchain Security, Vulnerability Detection, Empirical Evaluation,
Developer Survey, Analyzers Limitations

ACM Reference Format:

Tamer Abdelaziz, Salma Alsaghir, and Karim Ali. 2026. Where Do Smart
Contract Security Analyzers Fall Short?. In 23rd International Conference
on Mining Software Repositories (MSR ’26), April 13–14, 2026, Rio de Janeiro,
Brazil. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3793302.
3793338

This work is licensed under a Creative Commons Attribution 4.0 International License.
MSR ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2474-9/2026/04
https://doi.org/10.1145/3793302.3793338

1 Introduction

Blockchain platforms such as Ethereum [10] have popularized smart
contracts, which are self-executing programs that underpin decen-
tralized applications. Critical ecosystems such as decentralized fi-
nance (DeFi) [60] and non-fungible token (NFT) marketplaces [59]
now depend on them for transparent, verifiable transactions. This
adoption has fueled the growth of the global blockchain industry,
projected to reach US$ 393 billion by 2030 [38]. However, smart
contracts remain frequent targets of security exploits. In 2024 alone,
303 attacks resulted in losses exceeding US$ 2.2 billion, an increase
of 21% over the previous year [12]. From large-scale reentrancy ex-
ploits to subtle arithmetic errors, recurring vulnerabilities continue
to erode developer and investor confidence [52, 53].

To mitigate these risks, the research community and industry
have introduced a wide range of security analyzers that automati-
cally detect vulnerabilities before deployment. These analyzers em-
ploy diverse techniques, including static analysis (e.g., Slither [24],
Vandal [9]), symbolic execution (e.g., Mythril [39], Oyente [37]),
fuzzing (e.g., Echidna [29], Confuzzius [57]), and more recently,
learning-based methods (e.g., GPTScan [55], Dlva [3], SCooLS [2]).
Despite the availability of several tools, real-world attacks continue
to occur. This disconnect raises a central question: are these security
analyzers not sufficiently effective, or are developers not using them
effectively (if at all)?

Understanding this gap requires addressing two complemen-
tary facets. The first concerns the technical effectiveness of existing
analyzers. In other words, how accurately and efficiently these
tools detect vulnerabilities in real-world smart contracts. Although
prior work (e.g., Ghaleb and Pattabiraman [26], Durieux et al. [20])
have established initial benchmarks, they often relied on synthetic
datasets containing only vulnerable samples. This design prevents
realistic estimation of false positive and false negative rates, which
are key metrics to determine whether developers can trust and
actively use these security analyzers. The second facet concerns
developer perception and trust. Even technically sound tools would
fail in practice, if users find them slow, imprecise, or unhelpful.
Studies from other software domains [19, 33] show that develop-
ers frequently ignore analysis alerts that they do not perceive as
actionable. However, little is known about whether smart contract
developers face similar issues or what factors shape their trust in
analyzer outputs.

To address these two facets, we conduct a convergent parallel
mixed-methods study [54] that integrates quantitative benchmark-
ing with qualitative insights from practitioners. On the quanti-
tative side, we systematically evaluate six widely used analyzers
(Confuzzius, Dlva, Mythril, Osiris, Oyente, and Slither) across
653 real-world smart contracts that include both vulnerable and
benign code. To ensure a fair comparison, we focus on three high-
impact vulnerability types from the OWASP Smart Contract Top

https://doi.org/10.1145/3793302.3793338
https://doi.org/10.1145/3793302.3793338
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793302.3793338

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Tamer Abdelaziz, Salma Alsaghir, and Karim Ali

10 [5]: reentrancy, suicidal contract termination, and integer arith-
metic errors, which are detectable by all studied tools. Our quantitive
benchmarking shows that no analyzer reliably detects all three vul-
nerability types. While Confuzzius excels at detecting reentrancy,
Osiris is the best at detecting integer arithmetic errors. Addition-
ally, Slither and Oyente trade some accuracy for faster scanning
time. Across all tools, suicidal contract termination is the most
challenging to detect (F1-scores below 60%).

On the qualitative side, we survey 150 professional smart con-
tract developers and auditors to understand how they perceive,
adopt, and trust these analyzers. Overall, the survey participants
are more familiar with classical vulnerability types (e.g., reentrancy)
than more recent threats (e.g., flash-loan attacks [6]). More than
two-thirds of the participants expect analysis results within 10 min-
utes, because it is critical to make an immediate decision to deploy a
contract or seek further auditing from a security expert prior to de-
ployment. We then draw several insights from the survey responses
that help us determine what design factors encourage broader in-
tegration of security analyzers into real development workflows.
In particular, we identify three key trust barriers that hinder tool
adoption: high false positive rates (70% of participants), lack of clear
explanations (65% of participants), and limited integration with de-
velopers’ workflows (71% of participants). Further analysis of the
survey responses show that most participants prefer brief explana-
tions that contain fix suggestions (82%) and precise bug locations
(78%). Few participants indicate their desire for more details such
as contextualized explanations (17%), real-world examples (17%), or
actionable remediation steps (20%).

By connecting measurable tool performance with developer trust
and adoption behaviors, our study advances the understanding of
how security analyzers can evolve from technically promising pro-
totypes into trusted components of secure smart-contract develop-
ment. In particular, this paper makes the following contributions:

• We present a balanced benchmark of six widely used smart
contract analyzers, revealing the trade-offs between detec-
tion accuracy, computational efficiency, and vulnerability
coverage across real-world smart contracts.

• We report results from a survey of 150 developers and au-
ditors, providing the first empirical account of how prac-
titioners perceive these analyzers, what drives or hinders
their trust, and which explanation styles that they find most
actionable.

• We integrate findings from both strands to explain why high
detection accuracy alone does not translate into widespread,
confident adoption.We then offer concrete recommendations
for aligning analyzer design with developer needs.

Availability. All data, benchmarks, and anonymized survey re-
sponses are available in our replication package [1].

2 Background

2.1 Smart Contracts

Smart contracts are self-executing programs deployed on blockchain
networks such as Ethereum [10]. They enforce agreements with-
out intermediaries and automatically execute transactions once
predefined conditions are met. To execute a transaction, it first is

stored in the mempool, a public staging area (pool) for all pending,
unconfirmed transactions waiting to be selected by a validator [23].

Since the code and state of smart contracts are immutable after
deployment, any vulnerability in a contract may have irreversible fi-
nancial consequences, making automated security analysis a critical
safeguard. Therefore, detecting malicious transactions in real-time
(i.e., while they are still in the mempool) is essential for preventing ex-
ploitation before the transactions are confirmed on the blockchain.

2.2 Smart Contract Vulnerabilities

Despite years of research and auditing practice, vulnerabilities
in smart contracts remain both common and costly. Chainaly-
sis [12] reports that in 2024 alone, security exploits across major
blockchains caused losses exceeding US$2.2 billion. Independent
audits continue to reveal that more than one-third of deployed con-
tracts exhibit at least one known weakness [20]. These recurring
failures highlight gaps between vulnerability detection tools and
developer practices.

Although dozens of smart-contract vulnerability types have been
catalogued, not all are equally destructive or detectable by auto-
mated analyzers. The OWASP Smart Contract Top 10 [5] identifies
the most impactful types. However, many tools advertise coverage
for only a subset of them. To ensure a fair and reproducible compar-
ison across analyzers, this study focuses on three high-impact and
widely supported types: reentrancy, suicidal contract termination,
and integer arithmetic errors. Our selection is based on four practical
criteria: (i) historical impact, as each class has caused documented
multi-million-dollar losses; (ii) analyzer coverage, which enables a
meaningful comparison across all evaluated tools on the same vul-
nerability types; (iii) labeling reliability, as programmatic predicates
and on-chain evidence let us construct reproducible ground truth;
and (iv) representative error families, ensuring our set spans control-
flow (reentrancy), lifecycle and access control (suicidal contracts),
and arithmetic errors (integer overflow/underflow). We exclude
emerging threats such as flash-loan and oracle-manipulation at-
tacks because developer familiarity with these classes remains low
(see Section 4) and most current analyzers provide little or no de-
tection support. Chaliasos et al. [13] reach a similar conclusion,
showing that 75% of 127 documented high-impact DeFi attacks fall
outside the detection capabilities of evaluated tools. Including such
vulnerabilities would result in near-zero detection rates, preventing
meaningful comparison.

2.2.1 Reentrancy. A reentrancy vulnerability occurs when a con-
tract sends funds to an external address before updating its internal
state, allowing a malicious callee to recursively re-enter the vulner-
able function and drain funds. The 2016 DAO incident exploited this
flaw to steal 3.6 million ETH (≈ US$60 million at the time), which
required a controversial hard fork of Ethereum to recover those
funds [52]. Although modern frameworks (e.g., OpenZeppelin’s
ReentrancyGuard) may help prevent it, reentrancy remains among
the most frequently exploited weaknesses in decentralized finance
(DeFi) platforms.

2.2.2 Suicidal Contract Termination. Also known as a suicide or
selfdestruct vulnerability, this issue occurs when contract functions
that can call selfdestruct() lack sufficient access controls, such

Where Do Smart Contract Security Analyzers Fall Short? MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

as ownership checks or function modifiers [22]. This allows an
unauthorized actor to destroy the contract. A prominent exam-
ple is the 2017 Parity Wallet hack, where an attacker destroyed
a crucial library contract, permanently freezing approximately
500,000 ETH (worth roughly US$150 million at the time). Although
Ethereum Improvement Proposal (EIP) 6049 [48] has deprecated
the selfdestruct() opcode in newer Solidity versions, similar kill-
switch logic remains common in upgradable proxy contracts, mak-
ing this a persistent security concern.

We consider suicidal contract termination as a specific, well-
bounded instance of access-control failure. It features a simple,
programmatic predicate for detection (unrestricted selfdestruct()),
and approximately two-thirds of the analyzers in our study detect
it. In contrast, general access-control vulnerabilities (e.g., complex
authorization logic or role misconfigurations) are highly context-
dependent and require manual specification for consistent labeling,
which compromises reproducibility.

2.2.3 Integer Arithmetic Errors. Arithmetic overflows and under-
flows occur when operations exceed numeric bounds. These issues
may result in unintended values [49], allowing attackers to create
unauthorized tokens or bypass balance checks. In fact, such bugs
have led to token-minting and balance-manipulation exploits, in-
cluding the 2023 Poolz Finance attack [53]. While Solidity 0.8.0
has introduced automatic overflow checks, legacy contracts and
libraries that still rely on unchecked arithmetic remain vulnerable.
Therefore, security analyzers must accurately identify arithmetic
issues across compiler versions, and notify developers to use safe
arithmetic operations (e.g., using OpenZeppelin’s SafeMath [43]).
To ensure that our evaluation includes detectable instances of this
class, we restrict the arithmetic-related portion of our benchmark
to contracts compiled with pre-0.8 compilers.

3 Empirical Evaluation of Security Analyzers

To evaluate how effectively current analyzers detect and report
smart-contract vulnerabilities, we conduct a quantitative bench-
mark on the three vulnerability types introduced in Section 2, focus-
ing on the trade-offs that shape developer trust and tool adoption.

3.1 Dataset Collection

Existing public datasets of vulnerable smart contracts contain du-
plicates, inconsistent labels, and overly synthetic samples [17]. To
enable fair comparison, we curate ScBench, a novel dataset of
real-world contracts with verified ground-truth labels that supports
measurement of both false positives and false negatives across the
three target vulnerability classes.

3.1.1 Data Sources. We collect 717 smart contracts from academic
datasets [3, 14, 27, 31] and security audit reports published by major
firms such as Trail of Bits [41], ConsenSys Diligence [18], and
OpenZeppelin [42]. We adopt the manually verified vulnerability
labels from these sources as our ground truth.

Our selection process imposes two key requirements on each
contract. First, the contract must contain at least one of the three
vulnerability types under study. Second, the verified source code
must be publicly available to enable our ground-truth validation.
For each selected contract, we fetch the verified source code and

Table 1: Distribution of smart contracts in ScBench.

Vulnerability Safe Vulnerable Total

Reentrancy 90 95 185
Suicide Attacks 89 220 309
Integer Overflow/Underflow 96 63 159

Total 275 378 653

its metadata (including compiler version and deployment block)
from Etherscan [21] and obtain the runtime bytecode from Google
BigQuery [28]. Source code availability is a primary filter, because
several academic datasets provide only contract addresses and la-
bels, without accompanying source code or bytecode. For example,
the dataset from Chen et al. [14] contains 756 addresses, but we
could successfully retrieve verified source code for only 309 of them.
Therefore, our collection pipeline automatically excludes contracts
with unverified source code.

3.1.2 Data Cleanup. We automatically remove non-ASCII arti-
facts, correct missing or inconsistent pragma declarations using the
metadata that we record for each contract. Additionally, we iso-
late individual sub-contracts from composite JSON files to ensure
successful compilation. After this cleanup, we obtain 653 contracts
that compile and run correctly across all studied analyzers.

3.1.3 Labeling and Validation. Following the principle “vulnerable
does not imply exploited” [46], our labeling distinguishes between
theoretical and exploited vulnerabilities. To achieve that, we first
manually inspect the source code of each contract to identify vul-
nerability patterns. For reentrancy, we check whether functions use
the method call() to transfer funds to external contracts before
updating state variables. This is because such pattern usually leads
to recursive calls, which is a common pattern in reentrancy attacks.
We then review the transaction history of the contract to detect
on-chain evidence of exploitation. For suicide attacks, we check for
unauthorized calls to selfdestruct(), and review transaction logs
for on-chain evidence of contract destruction. For arithmetic errors,
we identify arithmetic operations that may exceed the bounds of a
variable’s type without using secure libraries (e.g., SafeMath [43]).

This process yields ScBench, a dataset of 275 safe and 378 vulner-
able contracts. Table 1 shows their distribution, where each contract
contains at least one of the studied vulnerability types. ScBench
reflects realistic contract states and vulnerability patterns, enabling
precise measurement of false-positives and false-negatives.

3.2 Security Analyzer Selection

Our selection of security analyzers builds upon the comprehensive,
peer-reviewed catalogs compiled by Ivanov et al. [32] and Zhu
et al. [64], the most recent and extensive surveys published in 2023
and 2024, respectively, rather than a popularity-based selection.
Together, these surveys enumerate 133 and 178 distinct papers
and tools, providing a methodologically diverse and empirically
grounded foundation. From this broad inventory, we apply the
following inclusion criteria:

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Tamer Abdelaziz, Salma Alsaghir, and Karim Ali

• Open availability: the analyzer must be publicly accessible
and runnable through a Command Line Interface (CLI) to
enable large-scale experimentation.

• Version compatibility: the tool must support Solidity com-
piler versions 0.4.x–0.8.x to ensure coverage of commonly
deployed contracts.

• Multi-class coverage: the analyzer must detect at least two of
the three vulnerability classes in ScBench.

• Practical adoption: the tool should demonstrate active use
in research or auditing practice, reflected through citations,
community engagement, or repository activity (e.g., GitHub
> 1000 stars and > 300 forks).

To ensure methodological consistency and reproducible evalua-
tion across different analysis paradigms, we exclude the following
categories of tools:

• Proprietary or subscription-based analyzers (e.g., Zeus [34]),
as their closed-source nature prevents transparent evaluation
and replication of results.

• Tools targeting outdated Solidity versions (e.g., Sailfish [8]),
which are incompatible with current compilers and would
introduce operational bias.

• Tools requiring user defined specifications (e.g., Echidna [29]),
since their performance depends heavily on manual input,
undermining objective, automated comparison.

• Analyzers detecting only a single vulnerability type (e.g.,
eThor [51], SaferSC [56]), as they do not support a compre-
hensive evaluation across our selected vulnerability classes.

We further exclude LLM-based analysis techniques, because they
generally do not support the automated, reproducible evaluation
required by our study. Most current LLM-based tools are published
as research prototypes tailored to specific datasets, making them un-
suitable for integration into a standardized benchmarking pipeline.
For example, we attempt to evaluate BlockScan [62], but its im-
plementation is tightly coupled to its transactional dataset and we
could not adapt it to our benchmark. We have reached out to the
authors for guidance, but have received no response. Similarly, we
could not obtain a runnable version of BlockGPT [25] due to the
lack of a reusable publicly available tool. These practical barriers
prevent the consistent and fair comparison necessary for our evalu-
ation. We do not exclude ML-based tools categorically; for example,
we include Dlva [3] because it meets our criteria, but exclude others
(e.g., SaferSC [56]) that lack broad vulnerability coverage.

Applying our inclusion and exclusion criteria yields:
• Confuzzius [57]: a hybrid fuzzing tool for Ethereum smart
contracts that combines data-dependency analysis with tra-
ditional fuzz testing. It uses taint tracking and lightweight
symbolic execution to guide input generation towards po-
tentially vulnerable paths, improving detection of complex
issues such as reentrancy and arithmetic bugs. Confuzzius
balances fuzzing scalability with deeper bug coverage by
focusing on dependency-aware input selection.

• Dlva [3]: a deep learning-based analyzer that operates on
Ethereum Virtual Machine (EVM) bytecode using a Graph
Neural Network (GNN) to extract structural features. Since
Dlva operates on EVM bytecode, it does not need access to
the original Solidity source code of a contract. However, Dlva

Table 2: Empirical results for reentrancy.

Tool P R F1 FNR FPR Time (s)

Confuzzius 94.8% 94.6% 94.6% 2.1% 8.9% 565.12
Dlva 30.2% 43.8% 31.2% 97.9% 12.2% 2.51
Mythril 64.6% 55.7% 49.0% 80.0% 6.7% 723.66
Osiris 86.5% 84.3% 84.0% 3.2% 28.9% 117.25
Oyente 87.3% 85.4% 85.2% 3.2% 26.7% 7.91
Slither 91.9% 90.8% 90.7% 1.1% 17.8% 1.33

is trained on contracts labelled by Slither [24], inheriting
biases from those labels.

• Mythril (v0.24.7) [39]: a widely adopted symbolic execu-
tion engine for analyzing EVM bytecode. Mythril systemat-
ically explores execution paths with symbolic transaction
parameters, builds control-flow graphs, and uses the Z3 SMT
solver [16] to identify vulnerabilities such as reentrancy, sui-
cid attacks, and arithmetic bugs. It produces concrete exploit
traces, offering actionable outputs alongside vulnerability
reports.

• Osiris [58]: a symbolic execution-based tool that detects
integer-related vulnerabilities (e.g., overflows and under-
flows). Osiris targets arithmetic-specific invariants through
focused SMT queries, offering precise detection even in com-
plex control flows (e.g., loop-heavy contracts).

• Oyente [37]: one of the first symbolic execution frame-
works for Ethereum smart contracts. Oyente detects issues
such as reentrancy, transaction-ordering dependence, and
unchecked call returns. It uses path feasibility checks to re-
duce false positives and can generate concrete test inputs.
Oyente’s modular design laid the foundation for subsequent
symbolic execution tools and continues to be influential in
both academic research and security audits.

• Slither (v0.10.4) [24]: a fast static analyzer that operates
on Solidity source code. Slither constructs SlitherIR, its own
Intermediate Representation (IR), and then applies more than
70 vulnerability and quality checks (e.g., reentrancy, integer
bugs, improperly enforced access controls). Its lightweight
performance enables analyzing contracts in 2–3 seconds,
making it practical for large-scale detection and integration
into Continuous Integration (CI) pipelines.

3.3 Experimental Setup and Metrics

To collect the results for our analysis, we run each tool on ScBench,
with a timeout of 15 minutes per contract. For every run, we record
the reported vulnerability type and runtime. We then compare the
output against the ground truth labels to assess their performance
in terms of precision (P), recall (R), F1-score (F1), False Negative
Rate (FNR), False Positive Rate (FPR), and average analysis time per
contract. These metrics provide insights into each tool’s accuracy,
ability to identify vulnerabilities, and computational efficiency.

3.4 Results

3.4.1 Reentrancy. Table 2 shows that Confuzzius achieves the
highest overall accuracy (F1 = 94.6%), leveraging its hybrid fuzzing

Where Do Smart Contract Security Analyzers Fall Short? MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Table 3: Empirical results for suicide attacks.

Tool P R F1 FNR FPR Time (s)

Confuzzius 78.1% 51.1% 50.3% 66.8% 4.5% 481.01
Dlva 57.0% 40.1% 40.4% 70.9% 32.6% 2.20
Mythril 77.5% 49.2% 47.8% 69.5% 4.5% 491.71
Slither 70.0% 57.6% 59.4% 49.1% 25.8% 1.71

Table 4: Empirical results for integer arithmetic errors.

Tool P R F1 FNR FPR Time (s)

Confuzzius 47.5% 55.3% 47.9% 12.7% 14.6% 304.38
Mythril 77.8% 64.8% 54.7% 88.9% 0.0% 664.07
Osiris 84.1% 83.0% 83.2% 12.7% 19.8% 240.04
Oyente 75.7% 75.5% 75.6% 28.6% 21.9% 17.61

and taint-tracking design. Slither follows (F1 = 90.7%) with near-
instantaneous results (1.33 seconds per contract) but a higher FPR
(17.8%). Symbolic execution tools (Oyente and Osiris) are moder-
ately precise (F1 = 85.2% and 84%, respectively) but are more prone
to over-flagging (FPR = 26.7% and 28.9%, respectively) than Slither.
Mythril performs the weakest (F1 = 49%, FNR = 80%), mislabel-
ing most vulnerable contracts. Dlva shows similar weaknesses,
achieving modest precision (F1 = 31.2%), and missing nearly all
true positives (FNR = 97.9%) due to its conservative classification
thresholds that reduce FPR (12.2%) at the cost of recall.

3.4.2 Suicidal Contract Termination. Table 3 shows that all tools
struggle with this vulnerability type. Slither leads (F1 = 59.4%)
but its 25.8% FPR inflates the cost of manual triage that developers
have to do. Mythril and Confuzzius miss roughly two-thirds of
true cases, showing that their heuristics poorly model authorization
logic. Dlva achieves a moderate precision (P = 57.0%) and low recall
(R = 40.1%), missing a large fraction of true positives (FNR = 70.9%)
while also generating substantial false positives (FPR = 32.6%).

With respect to analysis time, Slither remains the fastest at an
average speed of 1.71 seconds per contract, whereas Confuzzius
and Mythril require >480 seconds, highlighting their computa-
tional intensity. Dlva is orders of magnitude faster than Con-
fuzzius and Mythril, and a close second to Slither. However,
Dlva achieves that at a clear cost to detection quality.

3.4.3 Integer Arithmetic Errors. Table 4 shows that Osiris, spe-
cialized for arithmetic invariants, attains the best F1 (83.2%) and
low FNR (12.7%), followed by Oyente (F1 = 75.6%). Confuzzius
and Mythril trail far behind (F1 = 54.7% and 47.9%, respectively),
highlighting their limited support for numeric reasoning.

No single analyzer dominates across all vulnerability types.
Confuzzius excels at detecting reentrancy, while Osiris per-
forms best on integer arithmetic errors. Slither and Oyente
trade their accuracy for faster scans. Dlva broadens cover-
age to contracts without source code, but still lag behind
source-aware analyzers. Suicide contract termination is the
most challenging to detect (F1 <60%).

3.5 Discussion

ScBench exposes a clear accuracy–efficiency frontier: precise de-
tection often comes with prohibitive runtime, while faster tools
over-flag benign contracts. These findings reveal why develop-
ers, even when tools exist, hesitate to integrate them into their
workflows. To address these challenges, we propose the following
targeted recommendations, each grounded in our findings:

(1) Integrate complementary approaches for broader coverage. Con-
fuzzius has the highest detection rates for reentrancy, reflecting
the effectiveness of combining fuzzing with symbolic execution.
Extending this hybrid analysis approach to symbolic execution
tools (e.g., Mythril) may reduce false negatives by improving
path exploration in complex contracts.

(2) Optimize symbolic execution. Mythril has high FNR, and runs
the slowest due to its exhaustive symbolic execution. Tech-
niques such as bounded exploration [11], feasibility checks sim-
ilar to Oyente, or SMT query optimization [15] may improve
both efficiency and vulnerability coverage.

(3) Expand specialized vulnerability patterns. Thanks to its special-
ized arithmetic predicates, Osiris has the best performance
in detecting integer arithmetic errors. Incorporating similar
tailored vulnerability patterns into other tools (e.g., Slither
and Confuzzius) may enhance their detection capabilities for
integer arithmetic errors and suicide attacks.

(4) Reduce false positives via cross-validation. High FPR for Osiris
and Oyente undermine trust in their outputs. Integrating static
analysis results from other tools (e.g., Slither) as a cross-
validation step would help filter implausible vulnerability re-
ports while maintaining acceptable analysis times.

(5) Invest in scalability. Confuzzius and Mythril have substan-
tially longer analysis times compared to other tools. Paralleliz-
ing symbolic execution and fuzzing workloads, as well as in-
corporating static pre-analyses to prioritize high-risk paths,
would help overcome this limited scalability. Techniques such
as bounded symbolic execution [11], feasibility checks similar
to Oyente, or SMT query optimization [15] can also be used
to improve both efficiency and vulnerability coverage. Improv-
ing scalability is key to make deep analyses practical within
developers’ expected runtime budgets (≤ 10 minutes).

(6) Develop ensemble-based analyzers. No single tool consistently
outperforms others across all vulnerability types and perfor-
mance metrics. Developing ensemble frameworks that com-
bine outputs from multiple analyzers (e.g., in a game-theoretic
fashion [30]) would leverage their strengths, provide broader
coverage, and reduce the impact of individual weaknesses.

(7) Develop and release LLM-based detectors. Researchers should pri-
oritize the public release of LLM-based vulnerability detectors
that meet reproducibility criteria, including benchmark-ready
artifacts and evaluation scripts to enable fair, automated com-
parison.

(8) Expand benchmarking to emerging threats. Our evaluation ex-
cludes flash-loan and oracle-manipulation vulnerabilities due
to limited analyzer support and low developer familiarity. As
tools mature, future benchmarks should incorporate curated
datasets for these exploit types to assess detection capabilities
against modern attack vectors.

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Tamer Abdelaziz, Salma Alsaghir, and Karim Ali

4 Surveying Smart Contract Developers

The benchmark results in Section 3 reveal significant variability in
the accuracy, efficiency, and reliability of existing analyzers. To un-
derstand how these technical limitations influence developer trust
and adoption, we complement our quantitative evaluation with a
survey of professional smart contract developers and auditors. This
section reports the qualitative and quantitative findings from that
survey, which forms the second strand of our convergent parallel
mixed-methods design [54].

4.1 Survey Design

4.1.1 Questionnaire. The survey comprises 25 questions that col-
lect demographic and contextual information, tool-usage patterns,
perceptions of accuracy and trust, and preferences for explanation
formats. The questions are a mix of multiple-choice, Likert-scale,
and open-ended formats to balance quantitative measurement with
qualitative depth. Table 5 lists all survey questions. The complete
questionnaire and anonymized responses are publicly available [1].

4.1.2 Recruitment. We recruited participants through Prolific [47],
pre-screening for involvement in smart-contract development, au-
diting, or blockchain security. Our inclusion criteria is:

• primary language is English,
• Prolific approval rate between 95–100%,
• current work involves programming languages, and
• holding an organizational role in data analysis, software
engineering, or information security.

Over a three-week data collection period on Prolific, we received
347 completed survey responses. Applying established quality-
control practices for the platform [44], we filtered this set to 150
high-quality submissions from participants with genuine experi-
ence in smart-contract analysis.

To verify participant expertise, we first use Prolific’s pre-screening
filters to recruit individuals who self-identify as professionally in-
volved in smart contract development, auditing, or blockchain se-
curity. Additionally, we have competency-check questions within
the survey itself. In particular, Q6 tests the ability to recognize both
classical and less common vulnerability types, while Q7 probes
for hands-on experience with specific analysis tools. We remove
responses that show inconsistent knowledge, such as claiming pro-
ficiency while failing to identify fundamental vulnerabilities, or
exhibit bot-like patterns. This approach evaluates applied under-
standing rather than relying solely on self-reported experience. The
high inter-rater reliability in our subsequent qualitative coding (Co-
hen’s 𝜅 = 0.755–0.866) further confirms that retained participants
provided coherent, expert-level feedback. Each verified participant
received £5 as a fair monetary compensation, according to the
average compensation on Prolific, for their time.

4.1.3 Ethical Considerations. Our study was approved by the Insti-
tutional Review Board (IRB) at NYU Abu Dhabi (Study ID: HRPP-
2025-3). The study is considered to pose minimal risk to participants.
Before answering the questions, we obtain informed consent from
each participant. We inform participants with the purpose of our
survey, and Prolific allows them to quit the survey at any time. We

Developer QA/Tester Researcher/
Student

Technical
Architect

Security
Auditor

44.67%
31.33% 28.67% 26% 24.67%

(a) Role

<1 year 1–2 years 3–5 years >5 years

15.33%
38% 37.33%

9.33%

(b) Years of experience

NFT DeFi DApps Enterprise Frontend

61.33% 52.67% 44% 37.33% 27.33%

(c) Types of projects

Figure 1: Background of survey participants.

ensure that the collected data is anonymized. We also pilot the sur-
vey to ensure that it can be completed within a reasonable amount
of time (25–30 minutes).

4.2 Research Questions

The main research question that motivates our work is: are existing
security analyzers not sufficiently effective, or are users not using them
effectively (if at all)? We break down this main research question
into several sub-questions:

• RQ1: What are the most commonly recognized security
vulnerabilities among users?

• RQ2: What are the most commonly used security analyzers?
• RQ3: What is an acceptable runtime performance of a secu-
rity analyzer?

• RQ4: What are the factors that affect trust/confidence in
security analyzers?

• RQ5: Why do users ignore reported vulnerabilities by secu-
rity analyzers?

• RQ6: What types of explanations for vulnerabilities flagged
by security analyzers do users find most effective in enhanc-
ing trust and facilitating remediation?

4.3 Findings

To analyze the quantitative survey responses, we employ descriptive
statistics. For qualitative insights, two authors have conducted a
Modified-Delphi card sorting [45] to systematically categorize open-
ended responses.

4.3.1 Participant Background. Figure 1 shows that participants rep-
resent diverse roles: developers (44.7%), testers (31.3%), researcher-
s/students (28.7%), technical architects (26%), and auditors (24.7%).
Most participants (75.33%) have 1–5 years of experience, and a

Where Do Smart Contract Security Analyzers Fall Short? MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Table 5: Survey questions grouped by section.

Section ID Question

Participant

Background

Q1 What is your role in the smart contract development process?
Q2 How many years of experience do you have with smart contract development?
Q3 Which programming languages do you primarily use for smart contract development?
Q4 What type of smart contract projects are you primarily involved in?
Q5 How important is security and safety in your smart contract development process?
Q6 Which of the following smart contract security vulnerabilities are you familiar with?

Usage of Security

Analyzers

Q7 Which security analyzers have you used during smart contract development?
Q8 How frequently do you use security analyzers when developing smart contracts?
Q9 At which stages of development do you typically use security analyzers?
Q10 What are your main reasons for using security analyzers?
Q11 Which type of interface do you prefer for using a security analyzer?
Q12 What type of input do you typically analyze with a security analyzer?
Q13 What is your preferred pricing model for a security analyzer?
Q14 What is the longest amount of time you would typically allow a security analyzer to run before expecting

results?
Q15 On average, how much time do you spend verifying whether a reported vulnerability is a true positive?

Confidence in

Security Analyzer

Outputs

Q16 How confident are you in the accuracy of vulnerabilities reported by security analyzers?
Q17 Which of the following factors increase your confidence in a security analyzer’s results?
Q18 Which of the following factors reduce your confidence in a security analyzer’s results?
Q19 Have you ever ignored a vulnerability reported by a security analyzer?
Q20 Can you briefly explain a situation where you chose to ignore a reported vulnerability?

Impact of

Explanation

on Confidence

Q21 What kinds of explanation do you findmost helpful from a security analyzer when it reports a vulnerability?
Q22 To what extent does the quality of the explanation affect your confidence in the analyzer’s results?
Q23 If a security analyzer reports a vulnerability and provides a detailed explanation with a code snippet or

suggested fix, how confident are you that the vulnerability is a true positive?
Q24 If a security analyzer reports a vulnerability but does not include an explanation, how confident are you

that it is a true positive?
Q25 Do you have any suggestions for improving the explanation formats used by security analyzers?

majority works on NFT (61.33%) and DeFi (52.67%) projects. Fi-
nally, most participants (96%) perceive smart contract security as
important.

4.3.2 Commonly Recognized Vulnerabilities (RQ1). Figure 2 shows
that participants are most familiar with classical vulnerabilities
such as reentrancy (62.7%) and integer arithmetic errors (54.7%),
while awareness of emerging threats such as flash-loan attacks or
oracle-manipulation attacks remains below 40%. This uneven famil-
iarity suggests that education and tool documentation continue to
emphasize established vulnerabilities, leaving new exploit classes
under-represented.

RQ1: Users are most familiar with classical vulnerabilities
such as reentrancy, while newer threats such as flash loan
and oracle manipulation are less recognized, highlighting
limited awareness of emerging attack types.

4.3.3 Usage Patterns (RQ2). Since most participants value smart
contract security, more than half (54.66%, Q8) use security analyzers
for more than 75% of their work. The uses (Q9) vary from during au-
dits (78%) to coding (75.33%) and testing (74%). The primary reasons

(Q10) for using security analyzers include identifying vulnerabili-
ties (89.33%), ensuring code quality (82%), learning about potential
security issues (68%), and complying with organizational or regu-
latory policies (53.33%). Participants have no clear preference of
tool interfaces (Q11). While 34% prefer CLI, 28% prefer Integrated
Development Environment (IDE) plugins, and 21.33% would rather
use a web-based interface. With respect to tool cost, a majority of
participants prefer to use freemium pricing models (52%, Q13).

Figure 3 shows that Slither is the most commonly used an-
alyzer (77.33%), followed by Mythril (51.3%). Their popularity
reflects practical considerations. Slither ’s active maintenance,
fast analysis, and broad vulnerability coverage (as we show in Sec-
tion 3) make it a default choice for many developers. Nevertheless,
Mythril remains attractive for its symbolic-execution capabilities
despite slower runtimes. In contrast, analyzers that demand exten-
sive user-defined inputs (e.g., Echidna) or that are no longer actively
maintained (e.g., SmartCheck) exhibit notably lower adoption.

Although the literature contains many Machine Learning (ML)-
based vulnerability detectors [64], few authors release production-
ready tools or datasets, and none of our survey participants reported

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Tamer Abdelaziz, Salma Alsaghir, and Karim Ali

Reentrancy Front
Running

DoS
Attacks

Logic
Errors

Parity Wallet
Hack 1

Integer
Overflow

Unhandled
Exception

Parity Wallet
Hack 2

Flash
Loan

Timestamp Honeypot Gas
Limit

Oracle
Manipulation

Greedy
Contract

62.67% 62% 56% 55.33% 55.33% 54.67% 51.33%
37.33% 36.67% 35.33% 34% 32% 28.67% 24%

Figure 2: Familiarity with smart contract security vulnerabilities.

Slither Mythril Securify Oyente Echidna Smartcheck

77.33%

51.33%
39.33% 32.67% 30.67% 26.67%

Figure 3: Most commonly used security analyzers.

<1 min 1–5 min 5–10 min 10–30 min 30–60 min >60 min

2.67%

34% 31.33% 32%

0% 0%

Figure 4: Acceptable running time for security analyzers.

using ML-based tools. This absence highlights a gap between re-
search and practice likely caused by limited tool availability, integra-
tion and deployment challenges, and concerns about explainability
and trust in ML-driven findings.

RQ2: Slither and Mythril are the most widely used an-
alyzers, reflecting developers’ preference for tools that are
actively maintained, fast, and easy to integrate into their
workflows.

4.3.4 Acceptable Runtime Performance (RQ3). Figure 4 shows that
more than two-thirds of participants expect analyzer results within
10 minutes (34% prefer 1–5 minutes, 31% prefer 5–10 minutes),
and none accept runtimes beyond 30 minutes. These expectations
mirror the practical runtime limits that we observe in Section 3,
underscoring the importance of balancing accuracy with timely
feedback for integration into development workflows.

RQ3: 68% of participants expect analyzer results within
10 minutes, mirroring the time limits that we observe in
our empirical evaluation.

4.3.5 Factors Affecting Confidence in Analyzers (RQ4). Most par-
ticipants (73%) report partial trust in analyzer outputs (Q16), and
often review serious findings manually. Figure 5 presents the main
factors that participants find helpful to improve their confidence
in tool results: detailed explanations (82.67%) and analyzer repu-
tation (82%). Conversely, confidence is undermined by outdated
tools (71.33%), high FPR (70.67%), and lack of explanations (65.33%).
The quality of explanations influences confidence for 58.67% of

Detailed
Explanations

Reputable Regularly
Updated

Positive
Experience

Low
FPR

Peer
Recommend

Open
Source

82.67% 82% 72.67% 62% 61.33%
36.67% 32.67%

(a) Factors increasing confidence

Outdated High FPR No
Explanations

Misses
New

Vulnerabilities

Poor
Support

Negative
Experience

Poor
UI

71.33% 70.67% 65.33% 60.67% 50% 44.67% 42%

(b) Factors decreasing confidence

Figure 5: Factors affecting confidence in security analyzers.

Not confident
at all

Somewhat
not confident

Neutral Somewhat
confident

Very
confident

8%

46.67%

18%
27.33%

0%

(a) Without explanations

Not confident
at all

Somewhat
not confident

Neutral Somewhat
confident

Very
confident

0% 0.67% 0.67%

42.67%
56%

(b) With explanations

Figure 6: Confidence in security analyzers.

participants. These findings echo the technical shortcomings that
we identify in Section 3.

Figure 6 further shows that trust in analyzer results increases
sharply when they provide explanations or supporting evidence:
98.67% of participants report higher confidence when explanations
accompany alerts, and half indicate at least a two-level improvement
on a five-point scale.

Where Do Smart Contract Security Analyzers Fall Short? MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

False Positives Unclear Explanations Limited Time

33.33%
18.67% 12%

Figure 7: Main reasons to ignore analyzer warnings.

Concise
Descriptions

Fix
Suggestions

Bug
Location

82% 82% 78%

Figure 8: Preferred explanation formats.

RQ4: The dominant trust barriers in analyzer confidence are
high false-positive rates (71%), outdated tool support (71%),
and lack of explanations (65%). An overwhelming majority
of users (98%) feel more confident when tools provide clear,
detailed explanations of their results.

4.3.6 Reasons To Ignore Reported Vulnerabilities (RQ5). To inves-
tigate why users disregard vulnerabilities flagged by smart contract
security analyzers, our survey has closed-ended (Q19) and open-
ended (Q20) questions. Approximately one-third of participants
(34.67%) never ignore warnings. However, Figure 7 shows that users
ignore warnings primarily due to excessive false positives (33.33%)
or unclear explanations (18.67%). A smaller portion (12%) cite lim-
ited time as a reason for dismissal.

To gain deeper insights, we conduct a qualitative analysis of the
open-ended responses to Q20, coding prevalent themes to identify
common rationales. The inter-rater reliability for coding these re-
sponses is high (Cohen’s 𝜅 = 0.866), exceeding the 0.81 threshold
for almost perfect agreement [36], ensuring the robustness of our
qualitative analysis. Across the responses to Q20, the most frequent
themes are “manual verification” (14.67%) and “false positives” (14%).
Among mixed responses, the top two themes are also “false posi-
tives” (29.17%) and “manual verification” (27.78%). Since those two
themes are indicators of mistrust in tool accuracy, our qualitative
analysis reinforces that trust degradation, not indifference, drives
users to ignore reported vulnerabilities.

RQ5: Users ignore security warnings primarily due to exces-
sive false positives (33.3%) and unclear explanations (18.7%).
While a third of participants never ignore alerts, for most,
dismissing them is a pragmatic response to tool inaccuracy
and the high effort required to validate findings.

4.3.7 Most Useful Types of Explanations (RQ6). To understand
user preferences for vulnerability explanation formats, we analyze
responses to survey questions Q21 and Q25. Figure 8 shows that
participants equally prefer concise vulnerability descriptions and
fix suggestions (82% each), closely followed by a preference for
precise bug locations (78%).

To identify specific preferences, we further conduct a qualitative
analysis of the responses to Q25. The inter-rater reliability for cod-
ing these responses is relatively high (Cohen’s 𝜅 = 0.755), which
is close to the 0.81 threshold that typically indicates substantial
agreement between independent annotators [36]. Standalone pref-
erences are not that common in the responses, and include features
such as “structured explanations” (8%), “contextualized explana-
tions” (6.67%), “actionable remediation steps” (6%), and “visual aids”
(3.33%). The majority of responses (58.67%) exhibit amixed rationale,
indicating a desire for a combination of explanation features.Within
these mixed responses, the most frequent are “actionable remedi-
ation steps” (20.15%) and “contextualized explanations” (17.16%),
followed by “real-world examples and documentation” (17.16%),
“visual aids” (13.81%), and “structured explanations” (11.94%). These
findings indicate that users value actionable and clear explanations
that are not only concise but also practical and directly applicable
to resolving the identified vulnerabilities.

RQ6: Developers prioritize actionable and efficient vulnera-
bility explanations. Most users prefer brief descriptions with
fix suggestions (82%) and precise bug locations (78%). When
they require more details, participants often prefer action-
able remediation steps (20.2%), contextualized explanations
(17.2%), and real-world examples (17.2%).

4.4 Implications for Tool Design

Integrating user feedback with our benchmarking results yields sev-
eral actionable recommendations for designing security analyzers
for smart contracts. These recommendations directly reflect user
needs and expectations, supporting more effective, trustworthy,
and widely adopted tools.
(1) Balance accuracy with feedback speed.More than two thirds of

participants expect analysis results within 10 minutes, and none
accept tools to take 30 minutes or more to produce their results.
To integrate into iterative development workflows without dis-
rupting productivity, analyzers should aim for that 10-minute
window.

(2) Prioritize clarity over verbosity. The quality of reported expla-
nations affect the confidence of more than half of participants
in the produced analyzer results. Additionally, more than 80%
of participants prefer brief descriptions and actionable fix sug-
gestions. Therefore, analyzers should focus on providing suc-
cinct, verifiable explanations, and concrete remediation steps
for flagged vulnerabilities.

(3) Improve precision and filtering.Themain reason that participants
ignore warnings is high FPR (33.33%). Since high FPR directly
translates into wasted triage effort and reduced trust, security
analyzers must focus on producing precise results.

(4) Support flexible interfaces. Participants prefer analyzers avail-
able as CLI tools, IDE plug-ins, or web dashboards, reflecting di-
verse workflows. To maximize their adoption, analyzers should
support flexible deployment options that accommodate those
diverse workflows.

(5) Reconcile conciseness with contextual depth through mode-based
explanations. Our findings show that developers prefer con-
cise descriptions (82%) but also request detailed context such

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Tamer Abdelaziz, Salma Alsaghir, and Karim Ali

as actionable remediation steps (20.2%). Rather than a contra-
diction, these preferences reflect different workflow phases.
During triage, developers need brief one-line descriptions with
bug locations for quick go/no-go decisions. During remedia-
tion, they require expandable, detailed fix suggestions when a
warning is deemed credible. An ideal analyzer should support
both modes: a summary mode providing brief descriptions for
scanning many warnings, and a detail mode with code snippets
and remediation patterns for confirmed issues, analogous to
compiler error messages with optional –explain flags.
These practitioner insights, when combined with the quantita-

tive benchmarking, reveal how measurable tool deficiencies mani-
fest as usability and trust barriers in practice. Together, they provide
an evidence-based foundation for designing next-generation ana-
lyzers that developers are both willing and able to use.

5 Threats to Validity

5.1 Internal Validity

A primary threat arises from the accuracy of ground truth labels for
vulnerabilities in our curated dataset. Inaccuracies in these labels
might bias our valuation metrics such as precision and recall, po-
tentially skewing our assessment of tool performance. To mitigate
this, we conducted a manual code analysis to identify vulnerabil-
ity patterns, reviewed transaction histories to detect evidence of
exploitation, and cross-validated labels against reported incidents
from security audits and academic literature [3, 14, 27, 31] and
ensured that the dataset includes both exploited and unexploited
contracts, adhering to the principle: vulnerability does not imply
exploitation [46].

Another threat is the 15-minutes timeout set for tool evaluations,
which might truncate analysis for slower tools (e.g., Mythril and
Confuzzius), affecting performance metrics. However, this limit is
50% more than the 10-minute window within which developers
expect to receive analysis results. Therefore, we see it is a reasonable
balance between completeness and practical constraints.

Finally, self-reported data from our survey may be subject to
social desirability bias, potentially inflating reported expertise or
tool usage. To address this issue, we ensured anonymity through
Prolific [47] and targeted experienced practitioners to encourage
candid responses.

5.2 External Validity

Our dataset of Ethereum contracts may not fully represent contracts
on other blockchains (e.g., Binance Smart Chain [7]), potentially
limiting the applicability of our results. To address this threat, we
ensured that our dataset included diverse vulnerability types and
contract states that reflect real-world scenarios.

Similarly, our survey’s focus on Ethereum developers may re-
strict broader applicability to other blockchain ecosystems. To mit-
igate this threat, we recruited a diverse sample of practitioners
with different roles and experience levels, representing a broad
cross-section of the Ethereum community. Our study focuses on
Ethereum, because it hosts the largest, most mature smart-contract
ecosystem, providing abundant real-world incidents, diverse de-
ployed bytecode, and well-established analysis tooling. These con-
ditions are necessary for a thorough, reproducible evaluation. Our

findings are directly applicable to EVM-compatible chains (e.g., Bi-
nance Smart Chain [7], Polygon [35]), because they share the same
bytecode, compiler toolchain, and most vulnerability classes. Ex-
tending the study to non-EVM platforms (e.g., Solana [61]) requires
retooling the pipeline with different compilers, language semantics,
vulnerability taxonomies, and chain-specific labeling rules, which
we leave for future work.

Furthermore, our findings for the six tools evaluated may not
extend to other tools or future versions. To counter this threat, we
selected widely-used, actively maintained tools employing diverse
analysis techniques.

5.3 Construct Validity

A key threat is that our definitions of vulnerabilities may differ
across practitioner interpretations, potentially misaligning our met-
rics with real-world perceptions. To mitigate this threat, we adopted
standardized definitions from established literature [4, 63]. We also
focused on well-documented issues validated by security audits.

Another concern is that user trust, measured through self-reported
confidence and qualitative responses, may not fully reflect actual
behavior. To address this issue, we combine quantitative scales with
qualitative open-ended questions.

While metrics such as precision, recall, and F1-score evaluate
technical performance, they may not fully capture usability or real-
world effectiveness. To address this issue, we incorporated multiple
metrics, including false negative rate, false positive rate, and analy-
sis time. We then complemented these metrics with survey insights
on trust and usability to provide a comprehensive assessment.

6 Related Work

6.1 Smart Contract Vulnerabilities

Research on smart contract vulnerabilities has established a foun-
dation for understanding their nature and impact. Atzei et al. [4]
provide a seminal taxonomy of common vulnerabilities, including
reentrancy, integer overflow/underflow, and unchecked external
calls, which continue to threaten contract integrity. Zhou et al. [63]
builds on this work by applying it to smart contract security, identi-
fying over 20 vulnerability types and emphasizing the need for au-
tomated detection mechanisms. Real-world incidents (e.g., the DAO
hack in 2016 [52] and the suicide attack in 2017 that froze US$150
million [50]) illustrate the severe consequences of these flaws. Our
study leverages a dataset of 653 real-world contracts exhibiting
reentrancy, suicide, and integer overflow/underflow vulnerabili-
ties, reflecting these well-documented issues to comprehensively
evaluate security analyzers.

6.2 Empirical Evaluation of Smart Contract

Security Analyzers

Several large-scale empirical assessments have established bench-
marks for tool performance. Durieux et al. [20] have conducted an
extensive evaluation of nine tools on 47,587 real-world unlabelled
contracts, and 69 annotated vulnerable contracts, establishing the
reproducible SmartBugs framework. While this work highlights
detection overlaps and inconsistencies across tools, the evaluation
is limited to positive (i.e., vulnerable) samples, which inherently

Where Do Smart Contract Security Analyzers Fall Short? MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

restricts the ability to fully assess tool performance metrics such as
False Positive Rate (FPR) and False Negative Rate (FNR) by exclud-
ing a balanced set of non-vulnerable (i.e., negative) contracts.

To address tool limitations through systematic testing, Ghaleb
and Pattabiraman [26] propose SolidiFI, a mutation testing frame-
work. This approach injects 9,369 targeted vulnerabilities into
50 contracts to measure the false negatives and positives of six
static analyzers. Although the results revealed several tool limita-
tions, they are limited to the use of synthetic, injected bugs, which
may not capture the full complexity and diversity of real-world
vulnerabilities and developer code.

Other studies have focused on the discrepancy between flagged
vulnerabilities and actual exploitation. Perez and Livshits [46] ex-
amine this gap using Datalog queries across 23,327 vulnerable con-
tracts and 20 million Ethereum transaction traces, revealing that
only 1.98% of the flagged contracts are actually exploited. This work
offers crucial insight into why exploitation rates are low (e.g., fund
concentration). However, it relies on aggregated prior vulnerability
data without re-executing the tools or including negative samples,
thereby limiting the calculation of standard performance metrics
such as FPR and FNR.

More recently, Chaliasos et al. [13] present an evaluation of five
prominent analysis tools against 127 documented high-impact DeFi
attacks, totaling over US$2.3 billion in losses, combined with a sur-
vey of 49 practitioners. The authors found that the tools could have
prevented only 8% of these attacks, primarily reentrancy-based
issues, highlighting significant industry gaps in detecting logic
vulnerabilities. However, their evaluation centered on highly spe-
cialized exploits (e.g., flash loan-related) where 75% of them fall
outside the current scope of their benchmarked tools. Additionally,
the reported evaluation does not assess false positives, false neg-
atives, or efficiency metrics using a comprehensive and balanced
dataset.

In contrast to prior work, our study provides a comprehensive
performance and efficiency benchmark of six widely-used tools on
a tailored dataset of 653 manually labeled real-world contracts. We
precisely measure precision, recall, FPR, FNR, and efficiency across
three critical, high-monetary-loss vulnerability types: reentrancy,
suicide, and integer overflow/underflow. Our measurements reveal
high FPRs (e.g., 17.8% for Slither on reentrancy, 26.7% for Oyente)
that impose a significant, unsustainable verification burden on
developers. This finding is directly corroborated by our large-scale
survey of 150 practitioners, where 33.33% cite false positives as a
reason for ignoring security warnings. The deliberate focus of our
study on three vulnerability classes, paired with a custom-labeled
dataset enables a rigorous, consistent, and integrated analysis of
both tool performance and the resulting human-centric challenges.

6.3 User Trust and Usability in Smart Contract

Security

While the technical capability of security tools is paramount, user
trust and usability are critical human factors that directly influence
the practical adoption and effectiveness of these tools in devel-
opment workflows. Chaliasos et al. [13] have explored developer
experiences by surveying 49 practitioners on general tool usage and
workflow challenges. However, the study does not focus on how

quantitative performance metrics (e.g., FPR, FNR, analysis time)
impact user trust in the reported vulnerabilities. While numerous
other surveys and cataloging efforts exist for smart contract tools
and techniques [32], they seldom address human-centric adoption
or trust challenges.

In the broader software engineering domain, Noller et al. [40]
surveyed over 100 practitioners to identify factors that increase
trust in automatically generated patches for general-purpose pro-
gramming languages, with an emphasis on preferences for inter-
action and supporting evidence. Whether those findings are trans-
ferable to the high-stakes, domain-specific context of smart con-
tracts—where missed vulnerabilities can have catastrophic conse-
quences—remains unexplored. Our work fills this gap by specifically
investigating developer trust in smart contract security tools. We
move beyond general tool usage to quantify how high false alarm
rates, low detection rates, the lack of clear vulnerability explana-
tions, and poor tool integration erode developer confidence, often
leading to warning fatigue and the dismissal of critical alerts. This
comprehensive approach, integrating technical performance data
with deep qualitative insights into developer trust, is a distinguish-
ing factor of our contribution.

7 Conclusion

This paper presents a large-scale, practitioner-grounded assessment
of smart-contract security analyzers that integrates quantitative
benchmarking and qualitative developer insights. Our evaluation of
653 hand-validated contracts (ScBench) reveals substantial variabil-
ity in analyzer accuracy, efficiency, and usability. F1 scores range
from 31.2% to 94.6%, false-positive rates reach up to 32.6%, and
some analysis times exceed 700 seconds per contract. No single
tool dominates across all vulnerability classes. For example, Con-
fuzzius excels on reentrancy, while Slither achieves the lowest
false-negative rate, yet both underperform on suicidal contract
termination and arithmetic errors.

Our survey of 150 professional developers complements these
empirical findings by exposing the human factors behind low adop-
tion. Users cite excessive false positives, unclear explanations, and
slow feedback as the main barriers to trust. Collectively, these
insights demonstrate that the technical limitations measured in
benchmarks directly manifest as usability and confidence issues in
practice. Our evaluation focuses on three well-established vulnera-
bility classes where existing tools offermeasurable performance.We
acknowledge that emerging threats such as flash-loan and oracle-
manipulation attacks remain underexplored due to limited analyzer
support and low developer familiarity. As detection capabilities
mature, expanding benchmarks to these modern attack vectors
represents an important direction for future research.

From these results, we identify clear priorities for future research
and tool development. In the short term, analyzers should focus
on reducing false positives, improving explanation quality, and
optimizing runtime to fit developer workflows. Longer-term direc-
tions include integrating hybrid analysis techniques, and expanding
detection coverage to emerging attack vectors such as flash-loan
and oracle manipulation. We also call for community collaboration
on shared benchmarks and open datasets to ensure reproducible
progress.

MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil Tamer Abdelaziz, Salma Alsaghir, and Karim Ali

References

[1] Tamer Abdelaziz, Salma Alsaghir, and Karim Ali. 2025. Replication Package for
“Empirical Evaluation of Security Analyzers” and “Surveying Smart Contract
Developers”. https://github.com/blockchain-security-artifacts/sc-developer-
study-1.

[2] Tamer Abdelaziz and Aquinas Hobor. 2023. Schooling to exploit foolish contracts.
In 2023 Fifth International Conference on Blockchain Computing and Applications
(BCCA). IEEE, 388–395.

[3] Tamer Abdelaziz and Aquinas Hobor. 2023. Smart learning to find dumb contracts.
In 32nd USENIX Security Symposium (USENIX Security 23). 1775–1792.

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on ethereum smart contracts (sok). In Principles of Security and Trust: 6th Interna-
tional Conference, POST 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings 6. Springer, 164–186.

[5] Jinson Varghese Behanan and Shashank. 2025. OWASP Smart Contract Top 10.
Web Page. https://owasp.org/www-project-smart-contract-top-10/ Accessed:
2025-10-20.

[6] Jinson Varghese Behanan and Shashank. 2025. SC07:2025 - Flash Loan Attacks.
OWASP Smart Contract Top 10. https://owasp.org/www-project-smart-
contract-top-10/2025/en/src/SC07-flash-loan-attacks.html Accessed: 2025-10-20.

[7] Binance. 2020. Binance Smart Chain: A Parallel Blockchain to Binance Chain.
https://docs.bnbchain.org/. Accessed: 2025-07-18.

[8] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and
Giovanni Vigna. 2022. Sailfish: Vetting smart contract state-inconsistency bugs
in seconds. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 161–178.

[9] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981 (2018).

[10] Vitalik Buterin et al. 2013. Ethereum white paper. GitHub repository 1, 22-23
(2013), 5–7.

[11] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209–224.

[12] Chainalysis. 2025. 2025 Crypto Crime Report. https://go.chainalysis.com/2025-
Crypto-Crime-Report.html. Accessed: 2025-03-01.

[13] Stefanos Chaliasos, Marcos Antonios Charalambous, Liyi Zhou, Rafaila
Galanopoulou, Arthur Gervais, Dimitris Mitropoulos, and Benjamin Livshits.
2024. Smart contract and defi security tools: Do they meet the needs of practition-
ers?. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering. 1–13.

[14] Jiachi Chen, Xin Xia, David Lo, and John Grundy. 2021. Why do smart con-
tracts self-destruct? investigating the selfdestruct function on ethereum. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 2 (2021),
1–37.

[15] Leonardo De Moura and Nikolaj Bjørner. 2007. Efficient E-matching for SMT
solvers. In International Conference on Automated Deduction. Springer, 183–198.

[16] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[17] Monika Di Angelo and Gernot Salzer. 2023. Consolidation of ground truth sets for
weakness detection in smart contracts. In International Conference on Financial
Cryptography and Data Security. Springer, 439–455.

[18] ConsenSys Diligence. [n. d.]. ConsenSys Diligence - Smart Contract Audits.
https://consensys.net/diligence/. Accessed: 2025-07-18.

[19] Lisa Nguyen Quang Do, James R Wright, and Karim Ali. 2020. Why do software
developers use static analysis tools? a user-centered study of developer needs
and motivations. IEEE Transactions on Software Engineering 48, 3 (2020), 835–847.

[20] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International conference on software engineering.
530–541.

[21] Ethereum. 2025. Etherscan: The Ethereum Blockchain Explorer. https://ethersca
n.io/.

[22] Ethereum Foundation. 2025. Solidity Language Documentation: Function Modi-
fiers. Solidity Language Documentation. https://docs.soliditylang.org/en/latest/
contracts.html#function-modifiers Accessed: 2025-10-20.

[23] Etherscan. 2025. Pending TransactionsMempool. https://etherscan.io/txsPending.
https://etherscan.io/txsPending Accessed: October 16, 2025.

[24] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[25] Yu Gai, Liyi Zhou, Kaihua Qin, Dawn Song, and Arthur Gervais. 2023. Blockchain
large language models. arXiv preprint arXiv:2304.12749 (2023).

[26] Asem Ghaleb and Karthik Pattabiraman. 2020. How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT international symposium on software

testing and analysis. 415–427.
[27] GitHub. 2022. SB Curated. https://github.com/smartbugs/smartbugs-curated

Accessed: Jul 16, 2025.
[28] Google. 2025. BigQuery bigquery-public-data.crypto_ethereum.contracts. https:

//console.cloud.google.com/bigquery.
[29] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020.

Echidna: effective, usable, and fast fuzzing for smart contracts. In Proceedings of
the 29th ACM SIGSOFT international symposium on software testing and analysis.
557–560.

[30] Jiaqi He, Revan MacQueen, Natalie Bombardieri, Karim Ali, James R. Wright, and
Cristina Cifuentes. 2023. Finding an Optimal Set of Static Analyzers To Detect
Software Vulnerabilities. In International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 463–473.

[31] Tianyuan Hu, Jingyue Li, Bixin Li, and Andre Storhaug. 2024. Why smart con-
tracts reported as vulnerable were not exploited? IEEE Transactions on Dependable
and Secure Computing (2024).

[32] Nikolay Ivanov, Chenning Li, Qiben Yan, Zhiyuan Sun, Zhichao Cao, and Xiapu
Luo. 2023. Security threat mitigation for smart contracts: A comprehensive
survey. Comput. Surveys 55, 14s (2023), 1–37.

[33] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[34] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
analyzing safety of smart contracts.. In Ndss. 1–12.

[35] Jaynti Kanani, Sandeep Nailwal, and Anurag Arjun. 2021. Matic whitepaper.
Polygon, Bengaluru, India, Tech. Rep (2021).

[36] J. R. Landis and G. G. Koch. 1977. The measurement of observer agreement for
categorical data. In Biometrics. 159–174.

[37] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[38] MarketsandMarkets. 2025. Blockchain Market by Component, Provider, Type,
Organization Size, Application, and Region - Global Forecast to 2030. https:
//www.marketsandmarkets.com/Market-Reports/blockchain-technology-
market-90100890.html. Accessed: 2025-10-15.

[39] Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real
profit. HITB SECCONF Amsterdam 9 (2018), 54.

[40] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust enhancement issues in program repair. In Proceedings of the 44th interna-
tional conference on software engineering. 2228–2240.

[41] Trail of Bits. [n. d.]. Trail of Bits - Security Audits and Research. https://www.tr
ailofbits.com/. Accessed: 2025-07-18.

[42] OpenZeppelin. [n. d.]. OpenZeppelin - Audits and Open Source Security. https:
//openzeppelin.com/security-audits/. Accessed: 2025-07-18.

[43] OpenZeppelin. 2025. OpenZeppelin Contracts. https://github.com/OpenZeppeli
n/openzeppelin-contracts.

[44] Stefan Palan and Christian Schitter. 2018. Prolific. ac—A subject pool for online
experiments. Journal of behavioral and experimental finance 17 (2018), 22–27.

[45] Celeste Lyn Paul. 2008. A modified delphi approach to a new card sorting
methodology. Journal of Usability studies 4, 1 (2008), 7–30.

[46] Daniel Perez and Benjamin Livshits. 2021. Smart contract vulnerabilities: Vul-
nerable does not imply exploited. In 30th USENIX Security Symposium (USENIX
Security 21). 1325–1341.

[47] Prolific. 2025. Prolific: Participant Recruitment for Research. https://www.prolif
ic.com/. Accessed: 2025-02-01.

[48] Ethereum Improvement Proposals. 2022. EIP-6049: Deprecate SELFDESTRUCT.
https://eips.ethereum.org/EIPS/eip-6049 Accessed: Oct 22, 2025.

[49] SWC Registry. 2020. Integer Overflow and Underflow. https://swcregistry.io/d
ocs/SWC-101/ Accessed: Jul 16, 2025.

[50] SWC Registry. 2020. Suicide Attack. https://swcregistry.io/docs/SWC-106/
Accessed: Jul 16, 2025.

[51] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. 2020.
ethor: Practical and provably sound static analysis of ethereum smart contracts. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 621–640.

[52] David Siegel. 2016. Understanding the DAO attack. https://www.coindesk.com/l
earn/understanding-the-dao-attack.

[53] SolidityScan. 2023. Poolz Finance Hack Analysis: Still Experiencing Overflow?
SolidityScan Blog. https://blog.solidityscan.com/poolz-finance-hack-analysis-
still-experiencing-overflow-fcf35ab8a6c5 Accessed: 2025-10-20.

[54] Margaret-Anne D. Storey, Rashina Hoda, Alessandra Maciel Paz Milani, and
Maria Teresa Baldassarre. 2025. Guiding principles for mixed methods research
in software engineering. Empirical Software Engineering (EMSE) 30, 5 (2025), 138.

[55] Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi Xu, Xiaofei
Xie, and Yang Liu. 2024. Gptscan: Detecting logic vulnerabilities in smart contracts
by combining gpt with program analysis. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering. 1–13.

https://github.com/blockchain-security-artifacts/sc-developer-study-1
https://github.com/blockchain-security-artifacts/sc-developer-study-1
https://owasp.org/www-project-smart-contract-top-10/
https://owasp.org/www-project-smart-contract-top-10/2025/en/src/SC07-flash-loan-attacks.html
https://owasp.org/www-project-smart-contract-top-10/2025/en/src/SC07-flash-loan-attacks.html
https://docs.bnbchain.org/
https://go.chainalysis.com/2025-Crypto-Crime-Report.html
https://go.chainalysis.com/2025-Crypto-Crime-Report.html
https://consensys.net/diligence/
https://etherscan.io/
https://etherscan.io/
https://docs.soliditylang.org/en/latest/contracts.html#function-modifiers
https://docs.soliditylang.org/en/latest/contracts.html#function-modifiers
https://etherscan.io/txsPending
https://etherscan.io/txsPending
https://github.com/smartbugs/smartbugs-curated
https://console.cloud.google.com/bigquery
https://console.cloud.google.com/bigquery
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
https://www.marketsandmarkets.com/Market-Reports/blockchain-technology-market-90100890.html
https://www.trailofbits.com/
https://www.trailofbits.com/
https://openzeppelin.com/security-audits/
https://openzeppelin.com/security-audits/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://www.prolific.com/
https://www.prolific.com/
https://eips.ethereum.org/EIPS/eip-6049
https://swcregistry.io/docs/SWC-101/
https://swcregistry.io/docs/SWC-101/
https://swcregistry.io/docs/SWC-106/
https://www.coindesk.com/learn/understanding-the-dao-attack
https://www.coindesk.com/learn/understanding-the-dao-attack
https://blog.solidityscan.com/poolz-finance-hack-analysis-still-experiencing-overflow-fcf35ab8a6c5
https://blog.solidityscan.com/poolz-finance-hack-analysis-still-experiencing-overflow-fcf35ab8a6c5

Where Do Smart Contract Security Analyzers Fall Short? MSR ’26, April 13–14, 2026, Rio de Janeiro, Brazil

[56] Wesley Joon-Wie Tann, Xing Jie Han, Sourav Sen Gupta, and Yew-Soon Ong.
2018. Towards safer smart contracts: A sequence learning approach to detecting
security threats. arXiv preprint arXiv:1811.06632 (2018).

[57] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. Confuzzius: A data dependency-aware hybrid fuzzer for smart contracts. In
2021 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 103–119.

[58] Christof Ferreira Torres, Julian Sch"̈utte, and Radu State. 2018. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th annual
computer security applications conference. 664–676.

[59] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-fungible token
(NFT): Overview, evaluation, opportunities and challenges. arXiv preprint
arXiv:2105.07447 (2021).

[60] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,
and William Knottenbelt. 2022. Sok: Decentralized finance (defi). In Proceedings

of the 4th ACM Conference on Advances in Financial Technologies. 30–46.
[61] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance

blockchain v0. 8.13. (2018).
[62] Jiahao Yu, Xian Wu, Hao Liu, Wenbo Guo, and Xinyu Xing. 2025. BlockScan:

Detecting Anomalies in Blockchain Transactions. In The Thirty-ninth Annual
Conference on Neural Information Processing Systems.

[63] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.
Sok: Decentralized finance (defi) attacks. In 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2444–2461.

[64] Huijuan Zhu, Lei Yang, Liangmin Wang, and Victor S Sheng. 2024. A survey
on security analysis methods of smart contracts. IEEE Transactions on Services
Computing (2024).

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contracts
	2.2 Smart Contract Vulnerabilities

	3 Empirical Evaluation of Security Analyzers
	3.1 Dataset Collection
	3.2 Security Analyzer Selection
	3.3 Experimental Setup and Metrics
	3.4 Results
	3.5 Discussion

	4 Surveying Smart Contract Developers
	4.1 Survey Design
	4.2 Research Questions
	4.3 Findings
	4.4 Implications for Tool Design

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity
	5.3 Construct Validity

	6 Related Work
	6.1 Smart Contract Vulnerabilities
	6.2 Empirical Evaluation of Smart Contract Security Analyzers
	6.3 User Trust and Usability in Smart Contract Security

	7 Conclusion
	References

